Vector algebra application
This note will contain some basic relations from vector algebra and their application in vector calculus
Double cross product #
$$ \begin{align*} \vec a \times (\vec b \times \vec c) = (\vec a \cdot \vec c)\vec b-(\vec a \cdot \vec b)\vec c \end{align*} $$
Curl of Curl of a vector field #
This is not a proof using the Grassmann identity, but just a way to remember it.
$$ \begin{align*} \vec \nabla \times (\vec \nabla \times \vec v) = \vec \nabla (\vec \nabla \cdot \vec v) - \vec \nabla ^{2}\vec v \end{align*} $$
Curl of curl is equal to gradient of divergence minus laplacian
Scalar triple product #
$$ \begin{align*} \vec a \cdot (\vec b \times \vec c)=\vec b \cdot (\vec c \times \vec a) = \vec c \cdot (\vec a \times \vec b)\\ \text{[a b c]=[b c a]=[c a b]} \end{align*} $$
zero when operating twice #
Divergence of Curl #
$$ \nabla \cdot (\nabla \times F) =0 $$
Curl of gradient #
$$ \begin{align*} \nabla \times (\nabla f) = \vec 0 \end{align*} $$