Coordinate systems for integration
Some common change in coordinate systems to evaluate integrals better and their corresponding scaling factor to convert between systems using the Jacobian:
In 2D #
- Cartesian: dA=dxdy
- Polar: dA=r drdθ
- x=$r\cos\theta$
- y=$r\sin\theta$
In 3D #
- Cartesian: dV=dxdydz
- Cylindrical: dV=r drdθdz
- x=$r\cos\theta$
- y=$r\sin\theta$
- z=z
- Spherical: dV=$r^2 \sin(\theta)drd\theta d\phi$
- x=$r\sin \theta \cos\phi$
- y=$r\sin \theta \sin\phi$
- z=$r \cos \theta$