Curvature
of y=f(x) #
Radius of Curvature = $$\frac{(1+f’^2)^{3/2}}{f’’}$$
At the origin #
- Newton’s Method
- If x-axis is tangent, ROC=$$\lim_{(x,y)\rightarrow(0,0)}\left(\frac{x^2}{2y}\right)$$
- If y-axis is tangent, ROC=$$\lim_{(x,y)\rightarrow(0,0)}\left(\frac{y^2}{2x}\right)$$
- Series Method: If none of x,y axes are tangent
- Apply the regular ROC formula
of (x(t),y(t)) #
Radius of Curvature = $$\frac{(x’^2+y’^2)^{3/2}}{y’‘x’-x’‘y’}$$
of r=f(θ) #
Radius of Curvature = $$ \frac{(r^2+r_1^2)^{3/2}}{r^2+2r_1-rr_2}\\ where\\ r_1=r’,r_2=r’’ $$