Trig and Hyperbolic Functions
Hyperbolic in terms of trig #
$\cosh(z)=\cos(iz)$ $\sinh(z)=-i\sin(iz)$
Trig in terms of Hyperbolic #
$\cos(z)=\cosh(iz)$ $\sin(z)=-i\sinh(iz)$
Inverse of sinh and cosh in terms of ln #
$\cosh^{-1}(x)=ln(x+\sqrt{x^2-1})$ $\sinh^{-1}(x)=ln(x+\sqrt{x^2+1})$