🌱 Digital Garden

Mathematical Preliminaries

random quantity #

Random Variable

sigma algebra #

If $\Omega$ is a given set, then a $\sigma-$algebra $\mathbb{F}$ on $\Omega$ is a family of subsets of $\Omega$ satisfying $

  • $\phi\in \mathbb{F}$
  • $F\in \mathbb{F}\Rightarrow F^{C}\in \mathbb{F}$
  • $A_{1},A_{2},…\in \mathbb{F}\Rightarrow \cup_{i}A_{i}\in \mathbb{F}$

Measurable space: $(\Omega, \mathbb{F})$

Probably measure #

Defined on a measurable space $(\Omega,\mathbb{F})$

probability measure is a function P: $\mathbb{F}\rightarrow [0,1]$ such that

  • $P(\phi)=0;P(\Omega)=1$
  • For disjoint sets $A_{1},A_{2}…\in \mathbb{F}, P(\cup A_{i})=\sum\limits P(A_{i})$

Probability space: $(\Omega,\mathbb{F},P)$

The subsets of $\Omega$ which belong to $\mathbb{F}$ are called $\mathbb{F}-$measurable sets

smallest sig alg #

Given a family U of subsets of $\Omega$, the smallest $\sigma$ algebra containing it

$$ H_{U}=\cap {H;H\\ \sigma \text{-algebra of }\Omega,U\subset H} $$

The one generated by open sets is called the Borel $\sigma$ algebra on $\Omega$ and its elements are called Borel sets.

Lemma #

If X,Y are functions $\Omega\rightarrow R^{n}$ then Y is $H_{X}$ measurable iff there exists a Borel measurable function g such that $Y=g(X)$

Let there be a complete probability $(\Omega, \mathbb{F},P)$

A random variable X is $\mathbb{F}$ measurable function $X:\Omega\rightarrow R^{n}$

$$ \begin{align*} \mu_{X}(B)=P(X^{-1}(B))\\ E[X]=\int_{\Omega}X(w)dP(w)=\int_{R^{n}}xd\mu_{X}(x)\\ E[f(X)]=\int_{R^{n}}f(x)d \mu_{X}(x) \end{align*} $$

independence #

A collection of random variables {$X_{i}$} is independent if the collection of generated $\sigma$ algebras $H_{X}$ is independent